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I The work presented here is based on three related bodies of research:

1. a theoretical foundation developed by Noel Cressie,
2. a method for spatial interpolation of very large data sets called

Fixed-Rank Kriging, also developed by Noel Cressie and students,
3. Spatial Statistical Data Fusion, the Ph.D. dissertation of Hai Nguyen,

which extends Fixed-Rank Kriging to address the data fusion problem.

I This research is supported by the NASA Earth Science Technology Office
through its Advanced Information Systems Technology Program.

I Some small notational errors in the published version of the paper. If you’d
like a corrected copy, please email me at Amy.Braverman@jpl.nasa.gov.
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Introduction

I Data fusion means many things to many different people.
I This is true even within the remote sensing community (e.g. "image fusion").
I Our definition focusses on Earth science: infer the true value of some

quantity of interest from multiple data sources with different statistical
characteristics (e.g. resolutions, systematic and random errors, etc.).

I The fused data are these estimates (also called the "predictions").
Uncertainties of the estimates (mean squared prediction errors, MSPE ’s)
must accompany the predictions.

I Inference from spatial data relies on the theory of spatial statistics, so that is
the formalism we use.

I First, consider the problem of inferring the true value from a single data
source.
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Introduction

Remote sensing data:

(A) is the true field. (B) is discretized into pixels. (C) is noisy (measurement bias
and variance added). (D) has missing data.

(A) (B) (C) (D)

Given only (D), can we infer (A)?
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Spatial Statistics

Let s1 and s2 be the (lat,lon) pairs of two point locations.

Let Y1(·) and Y2(·) be random variables representing the values of two quantities
(e.g. air temperature and humidity) at the locations of their arguments.
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slices of the joint pdf of Y1(s1) and Y2(s2)

at fixed values of Y2(s2).
top-down view

E [Y1(s1)|Y2(s2)] = projection of the slice means onto the floor is a line (linear regression).

E [·] = expected value. [Y1(s1)|Y2(s2)] = conditional distribution ofY1(s1) givenY2(s2).
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Spatial Statistics

I Remote sensing data typically have areal extent (support), not point support.

Y1(s1)

Y1(s1)

Z2(B(s2))

Z2(B(s2))

B(s2)

s2

slices of the joint pdf of Y1(s1) and Z2B(s2))

at fixed values of Z2(B(s2))

Slices have larger variances,
and linear regression may be
biased relative to that of
Y1(s1) on Y2(s2).

Z2(B(s2)) =

"
1

|B(s2)|

Z
u∈B(s2)

Y2(u)du

#
+ ε2(B(s2)),

where | · | is size, and ε2(·) is measurement error.

I Remote sensing data have measurement error: E(ε2(·)) = bµ (bias),
µ = E(Y (·)); Var(ε2(·)) = σ2 (variance).
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Kriging

I Optimal statistical spatial interpolation (for point support) using covariances
to determine weights.

I Georges Matheron (1963).
I Let Y (·) be a statistical "process" (random variable) to be estimated at

location s0 from observations at locations s1, . . . , sN ∈ D.
I Assume Z(si ) = Y (si ) + ε(si ), where ε(·) is zero-mean white noise with

finite variance, σ2v(s), σ2 > 0, and v(·) is assumed known.
I Assume Y has linear mean structure:

Y (s) = t(s)′α + ν(s),

where t(·) is a vector of known covariates (e.g. latitude and longitude), α is
estimated from the data, and ν(·) is small scale variation.

I ν(s) is assumed to be zero mean with finite, non-zero variance, and (spatial)
covariance function,

Cov(ν(u), ν(v)) = C(u, v).
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Kriging

I Combine all this and get:

Z = Tα + δ, δ = ν + ε,

where δ, ν, and ε are vectors of length N, T is an N × p matrix of
covariates (p = 2 for lat/lon).

I Note: δ is a combination of small scale variation and measurement error.
Write:

Cov(δ) = Σ = C + σ2V,

where C is an N × N matrix of spatial covariances, [C]ij = C(si , sj ), and
V = diag(v(s1), . . . , v(sN)). Note: V allows for non-constant measurement
error variance.

I The kriging estimator of Y (s0) is Ŷ (s0) = a′Z where a is chosen to minimize
E‖Y (s0)− a′Z‖2 subject to the unbiasedness condition,
E(a′Z) = E(Y (s0)) = µ.
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Kriging

Answer:

Ŷ (s0) = t(s0)α̂ + a′(Z− Tα̂),

RMSPE(Ŷ (s0)) = {C(s0, s0)− a′Σa

+ (t(s0)− T′a)′(T′Σ−1T)−1(t(s0)− T′a)}
1
2 ,

where

α̂ = (T′Σ−1T)
−1

T′Σ−1Z, a = c(s0)Σ−1, c(s0) ≡ (C(s0, s1), . . . ,C(s0, sN))′.

If there is bias in the measurement, E(ε(s)) = bµ, then

a =
“
Σ−1 + Σ−11(1 + b)

ˆ
−1′(1 + b)Σ−11(1 + b)

˜−1
1′(1 + b)Σ−1

”
c(s0)

+ Σ−11(1 + b)
ˆ
−1′(1 + b)Σ−11(1 + b)

˜−1
1′(1 + b)Σ−1.
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Fixed-Rank Kriging

I Unless C is isotropic and stationary, it is hard to invert the N ×N covariance
matrix Σ because N is very large. Isotropy and stationarity are unrealistic for
most geophysical processes, particularly at large scales.

I We don’t observe Z(s) (point support), we observe Z(B(s)) (footprint or
"block" support).

I Cressie and Johannesson (2008) introduced Fixed-Rank Kriging (FRK) as a
way to deal with these problems. Model the covariance function as

C(u, v) = S(u)′KS(v), u, v ∈ D,

for some r × r positive-definite matrix K, r << N. S(·) is the basis
expansion of a point location into a fixed set of (not necessarily orthogonal)
basis functions, Sj (·): S(u) = (S1(u), . . . , Sr (u))′.
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Fixed-Rank Kriging

u u
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Sj(l)(u) ≡





[
1−

(
||u−mj(l)||/rl

)2
]2

if ||u−mj(l)|| ≤ rl,

0 otherwise

Resolution 1 Resolution 2 Resolution 3 Local Bisquare Functions

Multi-resolution spatial basis functions. The spatial domain is subdivided into
three levels of resolution, each a factor of two finer than its parent. At resolution
l , each cell center (m1, . . . ,m4 in the left panel, but not shown in the others) is
the center of a circle of diameter rl . Point location u belongs to three circles, and
is distances d1, d2, and d3 from the cell centers, respectively. These distances
determine the basis function values at resolution l , as shown in the right panel.
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Fixed-Rank Kriging

Then Σ = σ2V + S′KS, and

Σ−1 = (σ2V)−1 − (σ2V)−1S′
`
K−1 + S(σ2V)−1S′

´−1
S′(σ2V)−1,

by the Sherman-Morrison-Woodbury formula (Henderson and Searle, 1981). This
only requires the inversion of K and (K−1 + S′(σ2V)−1S), both of which are r × r
matrices. Order of computation is O(Nr2), not O(N3).

The FRK kriging predictors and their uncertainties are

Ŷ (s0) = t(s0)α̂ + S(s0)′K̂SΣ̌
−1

(Z− Tα̂),

RMSPE(Ŷ (s0)) = {S(s0)′K̂S− S(s0)′K̂SΣ̌
−1S′K̂S(s0)+

(t(s0)− T′Σ̌−1S′K̂S(s0))′(T′Σ̌−1T)−1(t(s0)− T′Σ̌−1S′K̂S(s0))}
1
2 .

Σ̌ = σ2V + S′K̂S and K̂ is estimated from the data. (Assume σ2 is given and no
measurement bias.)
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Fixed-Rank Kriging

What about estimating K? We can use the footprint-level data:

Cov(Z(B(sk)),Z(B(sl ))) =

Cov

"
1

|B(sk)|

Z
u∈B(sk )

Y (u)du + ε(B(sk)),
1

|B(sl )|

Z
v∈B(sl )

Y (v)dv + ε(B(sl )

#
,

=
1

|B(sk)|
1

|B(sl )|

Z
u∈B(sk )

Z
v∈B(sl )

Cov(Y (u),Y (v))dudv

=
1

|B(sk)|

Z
u∈B(sk )

S(u)′du K
1

|B(sl )|

Z
v∈B(sl )

S(v)′dv,

= S̃(B(sk))′ K S̃(B(sl )),

where S̃(B(s)) =
“
S̃1(B(s)), . . . , S̃r (B(s))

”
, S̃j (B(s)) = 1

|B(s)|

R
u∈B(s) Sj (u)du.
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Fixed-Rank Kriging

Estimate K by:

1. Subdividing the domain into coarse bins (e.g. resolution of a coarse level of
S) and calculating Σ̂, an empirical estimate of the spatial covariance matrix
(details omitted in the interest of time).

2. Find K that minimize the distance between Σ̌ and Σ̂:

‖Σ̂− Σ̌(K)‖F = tr
“

(Σ̂− Σ̌(K))
′
(Σ̂− Σ̌(K))

”
.

This yields a method-of-moments estimate, K̂.
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Example: FRK AIRS CO2, May 1-3, 2003
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Example: FRK AIRS CO2, May 1-3, 2003

I Locations south of 60◦S screened out.

I Results with RMSPE > .5 screened out.

I Prediction grid is rectangular, 1◦ × 1◦.

I 396 basis functions at three coarsest levels of resolution on hexagonal
discrete global grid (DGG; Sahr and White, 1998). Intercell distances
at level 1 ≈ 4,400 km; at level 2 ≈ 2,500 km; at level 3 ≈ 1,400 km.

I Binning for method-of-moments estimation of K uses level 5 DGG
hexagons (intercell distance ≈ 400 km).

I Computation time: 15 seconds of a 3 GHz MacBook Pro.
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Data Fusion

Surely having a second data set must help, especially if it’s measuring the same
thing. If not, it will still help if the second measurement is correlated with the first.

Instrument 1 Instrument 2

Single process multiple source (SPMS), Y1(·) = Y2(·) = Y (·) or multiple process
multiple source (MPMS), Y1(·) 6= Y2(·).
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Data Fusion

E(Yi (s)) = µi , E(εj (Bjk)) = bjµj , Var(εj (Bjk)) = σ2
j , Bjk = Bj (sk),

where i indexes process (variable), j indexes instrument, and k indexes footprint.

Zj =
`
Zj (Bj1), . . . ,Zj (BjNj )

´′
,

Zj (Bjk) =
1
|Bjk |

Z
u∈Bjk

Yj (u) du + εj (Bjk),

Ŷ(s) =

»
Ŷ1(s)

Ŷ2(s)

–
=

»
a′11sZ1 + a′12sZ2

a′21sZ1 + a′22sZ2

–
.

Minimize E
“

Ŷ1(s)− Y1(s)
”2

+
“
Ŷ2(s)− Y2(s)

”2
ff

subject to

E(Ŷ1(s)) = b1a′11s1N1µ1 + b2a′12s1N2µ2 = µ1 and

E(Ŷ2(s)) = b1a′21s1N1µ1 + b2a′22s1N2µ2 = µ2.
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Data Fusion

ai1s = A−1
1 (Bi1 + C1mi ), and ai2s = A−1

2 (Bi2 + C2mi ).

where

mi =
(1− 1′N1

A−1
1 Bi1(1 + b1) + 1′N2

A−1
2 Bi2(1 + b2))

(1′N1
A−1

1 C1(1 + b1) + 1′N2
A−1

2 C2(1 + b2))
, and

A1 ≡ (IN1 − Σ̌
−1
11 Σ̌12Σ̌

−1
22 Σ̌21), Σ̌11 = S̃

′
1K̂11S̃1 + σ2

1V1,

A2 ≡ (IN2 − Σ̌
−1
22 Σ̌21Σ̌

−1
11 Σ̌12), Σ̌12 = S̃

′
1K̂12S̃2,

Bi1 ≡ Σ̌
−1
11 (ci1s − Σ̌12Σ̌

−1
22 ci2s), Σ̌21 = S̃

′
2K̂21S̃1

Bi2 ≡ Σ̌
−1
22 (ci2s − Σ̌21Σ̌

−1
11 ci1s), Σ̌22 = S̃

′
2K̂22S̃2 + σ2

2V2,

C1 = −Σ̌
−1
11

[
1N1(1 + b1)− Σ̌12Σ̌

−1
22 1N2(1 + b2)

]
, (Kij estimated using method of

C2 = −Σ̌
−1
22

[
1N2(1 + b2)− Σ̌21Σ̌

−1
11 1N1(1 + b1)

]
. moments as described earlier.)
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Fusing AIRS and OCO-2 CO2

I OCO-2 will measure total column CO2 on 1.1× 2.25 km footprints.
I AIRS measures mid-tropospheric (and above) CO2 at 90 km resolution.
I Y1(·) = total column CO2, Y2(·) = CO2 in the mid-troposphere and above.

AIRS footprint grid OCO track

100 km

~ 2200 km

AIRS CO2
footprint OCO CO2

footprints

2.25 km
1.1 kmOCO CO2

footprints

I Y1(s)− Y2(s) = planetary boundary layer CO2 (PBL CO2).
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Fusing AIRS and OCO-2 CO2

I PBL is that portion of the lower atmosphere that is dragged along by
the rotation of the Earth.

I CO2 fluxes from the surface enter the atmosphere at the PBL.

I Changes in PBL CO2 at any time should generally be correlated with
flux.

I Monitoring PBL CO2 may allow monitoring of sources and sinks.
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Fusing AIRS and OCO-2 CO2

I OCO-like (OCOL) synthetic data downscaled from Parallel Climate
Transport Model (PCTM) at 1◦ × 1.25◦ resolution to 1× 2 km resolution.

OCOL May 1-3, 2003AIRS May 1-3, 2003

I Estimate YPBL(s) = Y1(s)− Y2(s) = (w1,w2) · (Ŷ1(s), (Ŷ2(s))
′
, with

(w1,w2) = (1,−1).

I MSPE = (w1,w2) · Cov
»„

Ŷ1(s)

Ŷ2(s)

«
−
„

Y1(s)
Y2(s)

«–
· (w1,w2)′.
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Fusing AIRS and OCO-2 CO2

SSDF Predictions, May 1-3, 2003 SSDF Standard Errors, May 1-3, 2003

I Prediction grid: 1◦ × 1◦ rectangular; 396 basis functions at three levels of
DGG etc.. SE’s shown are truncated at .5 ppm, some higher.

I Computation time on 3 GHz MacBook Pro ≈ 5 minutes, half for
computation of MSPE ’s.

I Performed for 89 overlapping three day blocks May 1 through July 31, 2003.
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Conclusions

I Unlike more ad-hoc approaches, this methodology is inferential. It yields
formal statistical estimates and their uncertainties relative to truth.

I We’ve demonstrated computational feasibility, but need to study trade-off’s
related to number and kind of basis functions, binning and estimation of K’s
etc.

I Difficult to judge results because we have combined AIRS observations with
synthetic OCO-2. Need to create synthetic "truth", derive synthetic AIRS
and OCO-2, fuse and judge results against "truth".

I Results depend crucially on biases and variances of measurement error terms.
Instrument team validation results are the only sources of this information.

I Methodology is potentially applicable to many other situations.
I Next: Spatio-temporal Data Fusion (STDF) based on Fixed-Rank Filtering

(Kang, Cressie, and Shi, 2009).

Copyright 2010 California Institute of Technology, all rights reserved. Government
sponsorship acknowledged.
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